On transitive commutative idempotent quasigroups

نویسندگان

چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Commutative Idempotent Residuated Lattices

We investigate the variety of residuated lattices with a commutative and idempotent monoid reduct. A residuated lattice is an algebra A = (A,∨,∧, ·, e, /, \) such that (A,∨,∧) is a lattice, (A, ·, e) is a monoid and for every a, b, c ∈ A ab ≤ c ⇔ a ≤ c/b ⇔ b ≤ a\c. The last condition is equivalent to the fact that (A,∨,∧, ·, e) is a lattice-ordered monoid and for every a, b ∈ A there is a great...

متن کامل

Representable Idempotent Commutative Residuated Lattices

It is proved that the variety of representable idempotent commutative residuated lattices is locally finite. The n-generated subdirectly irreducible algebras in this variety are shown to have at most 3n+1 elements each. A constructive characterization of the subdirectly irreducible algebras is provided, with some applications. The main result implies that every finitely based extension of posit...

متن کامل

Selfdistributive Groupoids. Part A2: Non-idempotent Left Distributive Left Quasigroups

The present paper is a comprehensive survey of non-indempotent left distributive left quasigroups. It contains several new results about free groupoids and normal forms of terms in certain subvarieties. It is a continuation of a series of papers on selfdistributive groupoids, started by [KepN,03].

متن کامل

Subdirectly Irreducible Non-idempotent Left Distributive Left Quasigroups

Left distributive left quasigroups are binary algebras with unique left division satisfying the left distributive identity x(yz) ≈ (xy)(xz). In other words, binary algebras where all left translations are automorphisms. We provide a description and examples of non-idempotent subdirectly irreducible algebras in this class.

متن کامل

Idempotent Subreducts of Semimodules over Commutative Semirings

A short proof of the characterization of idempotent subreducts of semimodules over commutative semirings is presented. It says that an idempotent algebra embeds into a semimodule over a commutative semiring, if and only if it belongs to the variety of Szendrei modes.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of the Australian Mathematical Society

سال: 1979

ISSN: 1446-7887,1446-8107

DOI: 10.1017/s1446788700013422